TRIDONIC

Driver LC 40W 900/1050mA fixC SR SNC2

essence series

Product description

- _ Independent driver with strain-relief housing
- $_$ For luminaires with M and MM as per EN 60598, VDE 0710 and VDE 0711
- _ Temperature protection as per EN 61347-2-13 C5e
- _ Output current 900 or 1,050 mA
- _ Max. output power 40 W
- _ Nominal lifetime up to 50,000 h
- _ 5 years guarantee (conditions at
- https://www.tridonic.com/manufacturer-guarantee-conditions)

Housing properties

- _ Casing: polycarbonate, white
- _ Type of protection IP20
- _ Push-in terminals
- _ 2 separate strain relief parts for input and output cables with highly robust clamps

Functions

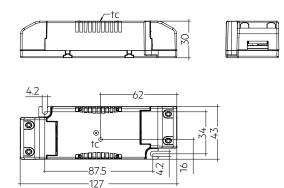
- _ Overload protection
- _ Short-circuit protection
- _ No-load protection
- _ No output current overshoot at mains on/off
- _ Burst protection voltage 1 kV
- _ Surge protection voltage 1 kV (L to N)
- _ Surge protection voltage 2 kV (L/N to earth)

Typical applications

- _ For spot light and downlight in retail and hospitality applications
- _ For panel light and area light in office and education application

Website

http://www.tridonic.com/87500762



Data sheet 10/24-LC559-9 Subject to change without notice.

TRIDONIC

Driver LC 40W 900/1050mA fixC SR SNC2

essence series

Ordering data

Туре	Article number	Packaging, carton	Packaging, lov volume	v Packaging, high volume	n Weight per pc.
LC 40/900/45 fixC SR SNC2	87500762	49 pc(s).	686 pc(s).	3,430 pc(s).	0.113 kg
LC 40/1050/39 fixC SR SNC2	87500763	49 pc(s).	686 pc(s).	3,430 pc(s).	0.113 kg

Technical data

Rated supply voltage	220 – 240 V
AC voltage range	198 – 264 V
Mains frequency	50 / 60 Hz
Overvoltage protection	320 V AC, 1 h
THD (at 230 V, 50 Hz, full load)	≤ 20 %
THD (at 230 V, 50 Hz, min. load)	≤ 20 %
Output current tolerance ®	± 7.5 %
Typical output LF current ripple at full load $^{\oslash}$	± 25 %
Starting time (at 230 V, 50 Hz, full load)	≤ 0.5 s
Turn off time (at 230 V, 50 Hz, full load)	≤ 0.5 s
Hold on time at power failure (output)	0 s
Ambient temperature ta	-20 +50 °C
Ambient temperature ta (at lifetime 50,000 h)	40 °C
Storage temperature ts	-40 +80 °C
Type of protection	IP20
Lifetime	up to 50,000 h
Guarantee (conditions at www.tridonic.com)	5 Year(s)
Dimensions L x W x H	127 x 43 x 30 mm

Standards

EN55015, EN 60598-1, EN 61000-3-2, EN 61000-3-3, EN 61347-1, EN 61347-2-13, EN 61547, EN 62384

Specific technical data

- Type	Output current $^{\odot}$	Input current (at 230 V, 50 Hz, full load)	Max. input power	Typ. power consumption (at 230 V, 50 Hz, full load)	Output power range	λ at full load $^{\otimes}$	Efficiency at full load [®]	λ over full operating range (min.)	Efficiency at min. Ioad [®]	Min. forward voltage	Max. forward voltage	Max. output voltage (U-OUT)	Max. output peak $_{\oplus}$ current at full load $^{\oplus}$	Max. output peak current at min. load ®	Max. casing temperature tc
LC 40/900/45 fixC SR SNC2	900 mA	220 mA	46 W	45.0 W	24.3 – 40.5 W	0.95	90 %	0.9C	88 %	27 V	45 V	60 V	1,260 mA	1,450 mA	80 °C
LC 40/1050/39 fixC SR SNC2	1,050 mA	220 mA	47 W	45.5 W	24.2 – 41.0 W	0.95	90 %	0.9C	88 %	23 V	39 V	60 V	1,470 mA	1,700 mA	85 °C

① Output current is mean value.

 $\ensuremath{\textcircled{}^{\circ}}$ Typical value at full load, depend on load's V-I character.

③ Test result at 230 V, 50 Hz.

 \circledast The trend between min. and full load is linear and depend on load's V-I character.

1. Standards

EN 55015 EN 61000-3-2 EN 61000-3-3 EN 61347-1 EN 61347-2-13 EN 61547 EN 60598-1 EN 62384

1.1 Glow wire test

according to EN 60598-1 with increased temperature of 850 °C passed.

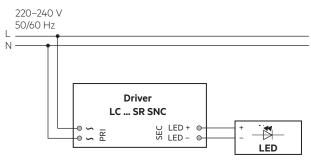
2. Thermal details and lifetime

2.1 Expected lifetime

Expected lifetime

Туре	ta	40 °C	50 °C
LC 40/900/45 fixC SR SNC2	tc	70 °C [⊕]	80 °C [®]
	Lifetime	50,000 h	30,000 h
LC 40/1050/39 fixC SR SNC2	tc	75 °C [⊕]	85 °C [⊕]
Le 40/1030/37 live 3k 3kc2	Lifetime	50,000 h	30,000 h

[®] Test result at max. output voltage.


The LED drivers are designed for a lifetime stated above under reference conditions and with a failure probability of less than 10 %. Lifetime declarations are informative and represent no warranty claim.

The relation of tc to ta temperature depends also on the luminaire design. If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical

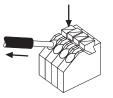
components (e.g. ELCAP) measured. Detailed information on request.

3. Installation / wiring

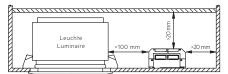
3.1 Circuit diagram

3.2 Wiring type and cross section

For wiring use stranded wire with ferrules or solid wire from 0.5–1.5 mm². Strip 8.5–9.5 mm of insulation from the cables to ensure perfect operation of the push-wire terminals.


Use one wire for each terminal connector only.

The max. torque at the clamping screw (M3) is 0.3 Nm.


3.3 Release of the wiring

Press down the "push button" and remove the cable from front.

3.4 Fixing conditions

Dry, acidfree, oilfree, fatfree. It is not allowed to exceed the maximum ambient temperature (ta) stated on the device. Minimum distances stated below are recommendations and depend on the actual luminaire. Is not suitable for fixing in corner.

3.5 Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED driver and other leads (ideally 5 - 10 cm distance)
- Max. length of output wires is 2 m.
- To comply with the EMC regulations run the secondary wires (LED module) in parallel.
- · Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

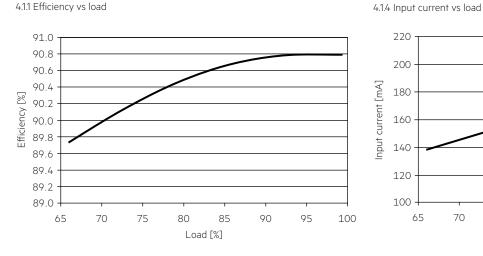
3.6 Replace LED module

- 1. Mains off
- 2. Remove LED module
- 3. Wait for 20 seconds
- 4. Connect LED module again

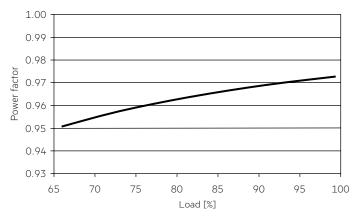
Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

3.7 Installation instructions

The LED module and all contact points within the wiring must be sufficiently insulated against 3 kV surge voltage. Air and creepage distance must be maintained.

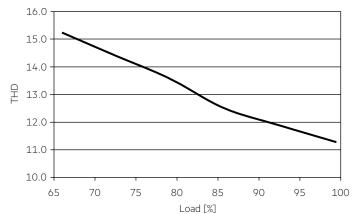

3.8 Mounting of device

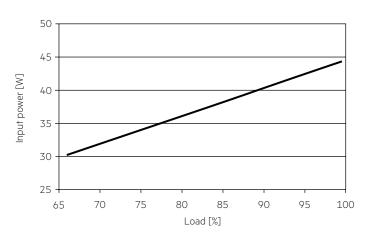
Max. torque for fixing: 0.5 Nm/M4

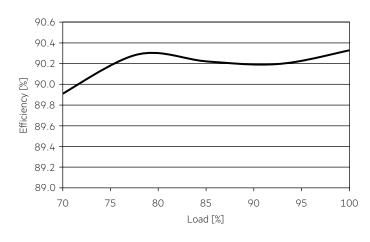

4. Electrical values

4.1 Diagrams LC 40W 900mA fixC SR SNC2

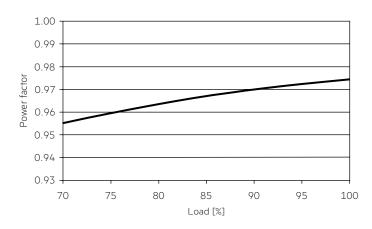
4.1.1 Efficiency vs load


4.1.2 Power factor vs load

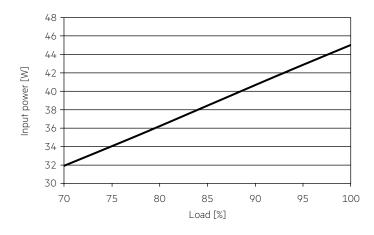

220 200 nput current [mA] 180 160 140 120 100 85 90 95 65 70 75 80 100 Load [%]



4.1.3 Input power vs load

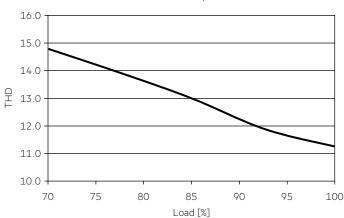


4.2 Diagrams LC 40W 1050mA fixC SR SNC2



4.2.2 Power factor vs load

4.2.3 Input power vs load



210 200 190 Input current [mA] 180 170 160 150 140 130 120 75 80 90 95 85 100 70 Load [%]

4.2.4 Input current vs load

THD without harmonic < 5 mA (0.6 %) of the input current:

4.3 Maximum loading of automatic circuit breakers in relation to inrush current

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrusł	n current
Installation Ø	1.5 mm ²	1.5 mm ²	1.5 mm ²	2.5 mm ²	1.5 mm ²	1.5 mm ²	1.5 mm ²	2.5 mm ²	Imax	Time
LC 40/900/45 fixC SR SNC2	35	50	65	75	35	50	65	75	10 A	100 µs
LC 40/1050/39 fixC SR SNC2	35	50	65	75	35	50	65	75	10 A	100 µs

These are max, values calculated out of continuous current running the device on full load. There is no limitation due to inrush current.

If load is smaller than full load for calculation only continuous current has to be considered.

4.4 Harmonic distortion in the mains supply (at 230 V / 50 Hz and full load)

in %

	THD	3.	5.	7.	9.	11.
LC 40/900/45 fixC SR SNC2	< 15	< 15	< 5	< 4	< 3	< 3
LC 40/1050/39 fixC SR SNC2	< 15	< 15	< 5	< 4	< 3	< 3

Acc. to 61000-3-2. Harmonics < 5 mA or < 0.6 % (whatever is greater) of the input current are not considered for calculation of THD.

5. Functions

5.1 Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED driver switches into hic-cup mode. After elimination of the short-circuit fault the LED driver will recover automatically.

5.2 No-load operation

The LED driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

5.3 Overload protection

If the maximum load is exceeded by a defined internal limit, the LED driver will protect itself and LED may flicker. After elimination of the overload, the nominal operation is restored automatically.

6. Miscellaneous

6.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V $_{DC}$ for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal. The insulation resistance must be at least 2 MQ.

As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V $_{AC}$ (or 1.414 x 1500 V $_{DC}$). To avoid damage to the electronic devices this test must not be conducted.

6.2 Conditions of use and storage

Humidity:	5 % up to max. 85 %,
	not condensed
	(max. 56 days/year at 85 %)

Storage temperature: -40 °C up to max. +80 °C

The devices have to be within the specified temperature range (ta) before they can be operated.

6.3 Maximum number of switching cycles

All LED driver are tested with 50,000 switching cycles.

6.4 Additional information

Additional technical information at <u>www.tridonic.com</u> \rightarrow Technical Data

Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.